Acta Crystallographica Section E

Structure Reports

 OnlineISSN 1600-5368

Mukesh M. Jotani ${ }^{\text {a }}$ * and Bharat B. Baldaniya ${ }^{\text {b }}$

${ }^{\text {a }}$ Bhavan's R.A. College of Science, Ahmedabad, Gujarat 380 001, India, and ${ }^{\mathbf{b}}$ M. G. Science Institute, Navrangpura, Ahmedabad, Gujarat 380 009, India

Correspondence e-mail:
mmjotani@rediffmail.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.065$
$w R$ factor $=0.145$
Data-to-parameter ratio $=13.6$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
(2Z)-Ethyl 2-(4-chlorobenzylidene)-7-methyl-3-oxo-5-phenyl-2,3-dihydro-5H-1,3thiazolo-[3,2-a]pyrimidine-6-carboxylate

In the title compound, $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{ClN}_{2} \mathrm{O}_{3} \mathrm{~S}$, the central pyrimidine ring is significantly puckered, assuming a distorted chair conformation. Intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bond and $\pi-\pi$ stacking interactions contribute to the stability of the structure.

Comment

The title compound, (I), belongs to a fused thiazolopyrimidine family. It possesses anticancer and anti-inflammatory activity. The anticancer drug screen was carried out using a diverse panel of cultured human tumor cell lines (Monks et al., 1991). The anti-inflammatory activity is determined by inhibition in the Carageena-induced rat-paw edema method (Winter et al., 1962). In view of these properties, the crystal structure of (I) has been determined.

(I)

Fig. 1 shows the molecular structure of (I) with the atomnumbering scheme. The pyrimidine is in a distorted chair form, as indicated by the puckering analysis $\left[q_{2}=0.181(3), q_{3}\right.$ $=0.066$ (3) $\AA, \theta=69.9$ (9) and $\varphi=35.5$ (10) ${ }^{\circ}$; Cremer \& Pople, 1975]. The thiazole ring makes dihedral angles of 82.8 (2) and 9.6 (2) ${ }^{\circ}$ with benzene rings $\mathrm{C} 11-\mathrm{C} 16$ and $\mathrm{C} 18-\mathrm{C} 23$, respectively. The geometry of the thiazole ring is unremarkable. All bond lengths and angles in the pyrimidine ring have normal values, with the exception of $\mathrm{N} 1-\mathrm{C} 1$ and $\mathrm{N} 1-\mathrm{C} 4$; in (I), these are 1.274 (4) and 1.423 (4) \AA, respectively. The corresponding values in the Cambridge Structural Database (2006 release; Allen, 2002) differ slightly, viz. 1.31 and $1.39 \AA$ A, respectively. The short C9-C10 bond distance $[1.478$ (6) Å] can probably be attributed to unresolved disorder of the terminal methyl group, as indicated by the displacement parameters of atoms C 9 and C 10 . The $\mathrm{C} 3-\mathrm{C} 8-\mathrm{O} 2-\mathrm{C} 9$ and $\mathrm{C} 8-\mathrm{O} 2-\mathrm{C} 9-\mathrm{C} 10$ torsion angles of $175.0(3)$ and $-168.9(4)^{\circ}$, respectively, describe the trans conformation of the ethoxy group.

The crystal structure of (I) is stabilized by an intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond (Fig. 2 and Table 1) and $\pi-\pi$

Received 15 November 2006
Accepted 22 November 2006

Figure 1
The molecular structure of (I), showing 40% probability displacement ellipsoids.

Figure 2
PLATON (Spek, 2003) plot of (I), showing intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions as dashed lines. H atoms not involved in hydrogen bonding have been omitted.
stacking interactions. A PLATON analysis (Spek, 2003) of (I) indicated that short intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonds may also help to consolidate the crystal packing. There is a comparatively weak $\pi-\pi$ stacking interaction between the C18-C23 benzene rings at (x, y, z) and $(1-x, 1-y,-z)$; their centroids are separated by 3.731 (3) \AA and the rings have a slippage of $1.318 \AA$ (Fig. 3).

Experimental

A mixture of ethyl 6-methyl-4-phenyl-2-thioxo-1,2,3,4-tetrahydro-pyrimidine-5-carboxylate (0.01 mol), chloroacetic acid (0.01 mol), fused sodium acetate (6 g) in glacial acetic acid (25 ml), acetic anhydride (10 ml) and benzaldehyde (0.01 mol) was refluxed for 3 h . The reaction mixture was cooled and poured into cold water. The resulting solid was collected and crystallized from methanol to obtain the final product (85% yield; m.p. 419 K). The compound was recrystallized by slow evaporation of an ethanol solution, yielding yellow needle-shaped single crystals suitable for X-ray diffraction.

Figure 3
A view of the $\pi-\pi$ stacking interaction (dashed line) in the crystal structure of (I). H atoms have been omitted for clarity.

Crystal data

$\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{ClN}_{2} \mathrm{O}_{3} \mathrm{~S}$
$M_{r}=438.91$
Monoclinic, $P 2_{1} / n$
$a=9.597$ (5) \AA
$b=10.907$ (5) \AA
$c=20.607$ (5) \AA
$\beta=91.970(5)^{\circ}$
$V=2155.8(16) \AA^{3}$
$Z=4$
$D_{x}=1.352 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=0.30 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Needle, yellow
$0.4 \times 0.2 \times 0.1 \mathrm{~mm}$

Data collection

Bruker SMART CCD
diffractometer
ω and φ scans
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) $T_{\text {min }}=0.93, T_{\text {max }}=0.978$

10312 measured reflections 3698 independent reflections 2615 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.051$
$\theta_{\text {max }}=25.0^{\circ}$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0629 P)^{2}\right. \\
& +0.0325 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\text {max }}=0.002 \\
& \Delta \rho_{\max }=0.31 \mathrm{e}^{-3}{ }^{-3} \\
& \Delta \rho_{\min }=-0.20 \mathrm{e}^{\AA^{-3}}
\end{aligned}
$$

Table 1
Hydrogen-bond geometry $\left(\AA{ }^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C19-H19 \cdots S1	0.93	2.63	$3.311(4)$	131
C7-H7C \cdots O3	0.96	2.21	$2.915(6)$	129
C14-H14 \cdots O1 $^{\mathrm{i}}$	0.93	2.53	$3.450(5)$	172

Symmetry code: (i) $-x+\frac{1}{2}, y-\frac{1}{2},-z+\frac{1}{2}$.
H atoms were placed in idealized positions ($\mathrm{C}-\mathrm{H}=0.93-0.98 \AA$) and constrained to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=$ $1.5 U_{\text {eq }}(\mathrm{C})$ for methyl H atoms and $1.2 U_{\text {eq }}(\mathrm{C})$ for other H atoms.

organic papers

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PLATON.

The authors thank CSMCRI, Bhavnagar, Gujarat, India, for the intensity data collection.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Bruker (2000). SMART (Vesrsion 5.625) and SAINT (Version 6.02A). Bruker AXS Inc., Madison, Wisconsin, USA.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Monks, A., Scudiero, D., Skehan, P., Shoemaker, R., Paull, K., Vistica, D., Hose, C., Langley, J., Cronise, P., Vaigro-Wolff, A., Gray-Goodrich, M., Campbell, H., Mayo, J. \& Boyd, M. (1991). J. Natl Cancer Inst. 83, 757-766. Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Winter, C. A., Risley, E. A. \& Nuss, G. W. (1962). Proc. Soc. Exp. Biol. Med. 111, 544-547.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

